

Phase II Bioenergy Production from MSW by High Solids Anaerobic Digestion

Energy Recovery from MSW

- Waste to Energy (WtE)→Incineration
 - Food and yard waste: High moisture and nitrogen content
 - → Low calorific value, environmental problems (e.g., dioxin and NOx)
- Landfills: Biogas production via recirculation of leachate for the entire waste stream
 - Fugitive methane emissions
 - High ammonia, COD, and salinity in leachate
- High Solids Anaerobic Digestion (HS-AD)
 - Breaks down of biodegradable material by microorganisms in the absence of oxygen
 - $\geq 15\%$ total solids content
 - Reduced digester size
 - Lower parasitic energy losses
 - Improved leachate quality
 - Higher quality biogas

Smartferm process (ZWE), Marina, CA, US

Challenges and Opportunities for HS-AD

P.1. High Volatile Fatty Acid (VFA) → pH ↓: Inhibits methanogens

S.1. Alkalinity source needed to help maintain neutral pH (e.g. oyster shells)S.2. Reduction of organic loading rate (e.g. substrate to inoculum ratio)

P.2. High N content of substrate

\rightarrow NH₃/NH₄⁺ \uparrow : Inhibits methanogens

S.1. Co-digestion of wastes to maintain the optimum C/N ratio (20-30/1)

Challenges & Opportunities for HS-AD

• Why Biosolids?

- High biosolids availability due to population growth and wastewater regulations
- Restrictions land application of biosolids
- Lack of biosolids AD infrastructure in US (~38% of biosolids treated by L-AD)
- High cost of biosolids disposal in landfills and incineration
 - \$110-650 per dry ton for landfill
 - \$300-500 per dry ton for incineration

Phase II: Goal & Objectives

- Overall goal: Improve environmental and economic sustainability of HS-AD of organic fraction of municipal solids waste (OFMSW) in Florida
- Specific Objectives
 - **Objective 1:** Investigate the performance of HS-AD of OFMSW with varying substrate ratios and temperature
 - **Objective 2:** Conduct life cycle assessment (LCA) to evaluate environmental impacts and benefits for HS-AD of OFMSW
 - **Objective 3:** Compare HS-AD with other waste management options (e.g. landfilling, waste to energy, composting) to ensure economic sustainability

Objective 1: Investigate HS-AD Performance

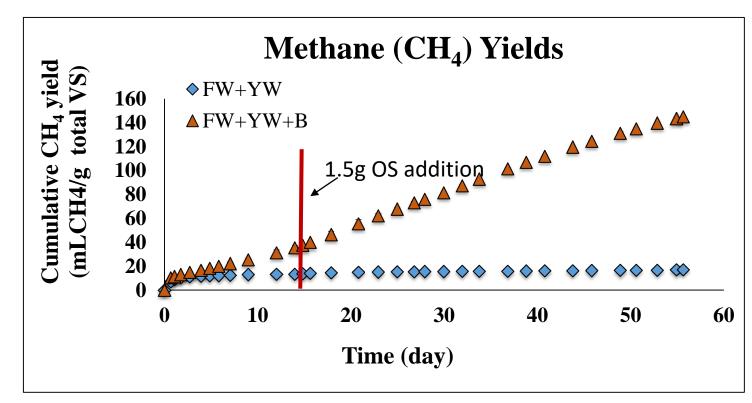
- **Objective 1:** Investigate the performance of HS-AD of OFMSW with varying substrate ratios and temperatures
 - Effects of biosolids addition on HS-AD of food waste and yard waste
 - Effects of substrate/substrate ratios (food waste, yard waste, and biosolids)
 - Effects of substrate/inoculum ratios (1.2, 2.5, & 3.8 based on VS)
 - Effects of operating temperature (35°C vs. 55°C)

Materials & Methods: Experiment (1)

Food waste

Yard waste

Biosolids & Inoculum


Material and Methods: Experiment (2)

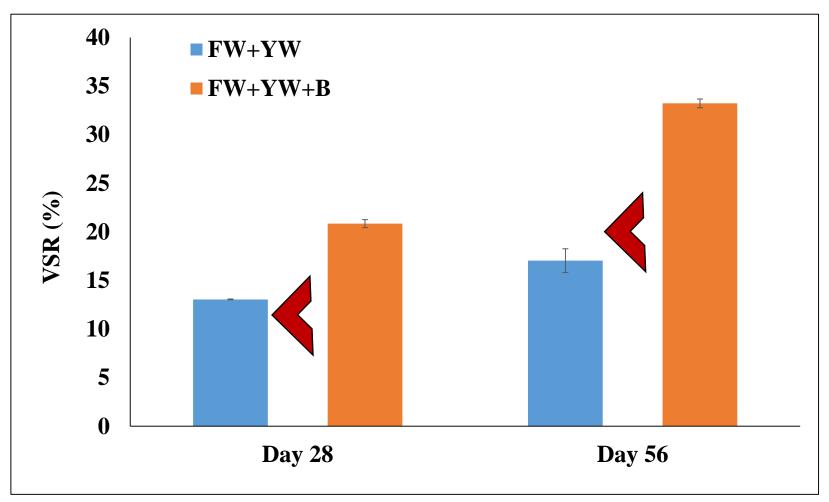
• Bio-Methane Potential (BMP) Set –Up

	1 st Set	2 nd Set	3 rd Set	4 th Set	
Temperature (°C)	35	35	35	35 & 55	
Alkalinity source addition	Oyster shells	Oyster shells/Sodium bicarbonate			
Substrate ratios (%)	FW/YW=50:50 FW/YW/B=33:33:33	FW/YW/B=33:33:33 FW/YW/B=23:62:15	FW/YW/B=23:62:15	FW/YW/B=23:62:15	
Inoculum type	Non-acclimated	Non-acclimated	Acclimated	Acclimated	
S/I ratios (Volatile Solids basis)	2.7	1	1.2 2.5 3.8	1	

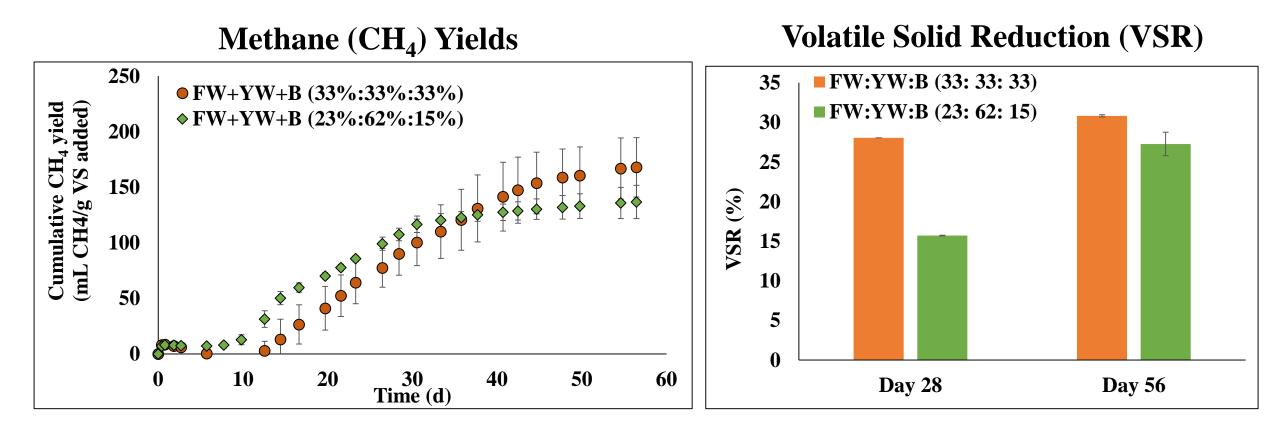
• Analytical Methods: Total Solid (TS), Volatile Solid (VS), pH, Alkalinity, soluble COD (sCOD), VFA, Total Nitrogen (TN), NH₄+-N, and Biogas/CH₄ content

Results: 1. Effect of Biosolids Addition (1)

- Low pH during the start-up period
 - Crushed oyster shells addition

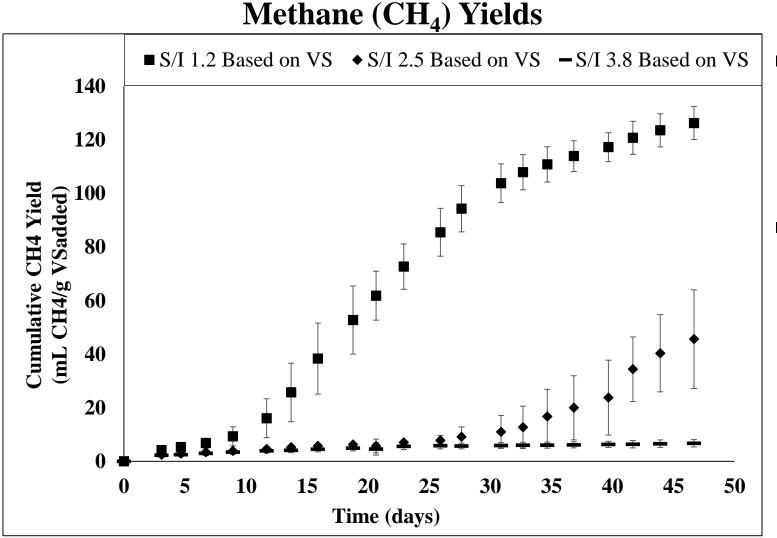

 \rightarrow Improved alkalinity

- Low CH₄ yield of FW+YW
 → High VFA concentrations (>10,000 mg/L)
- CH₄ yields higher with biosolids

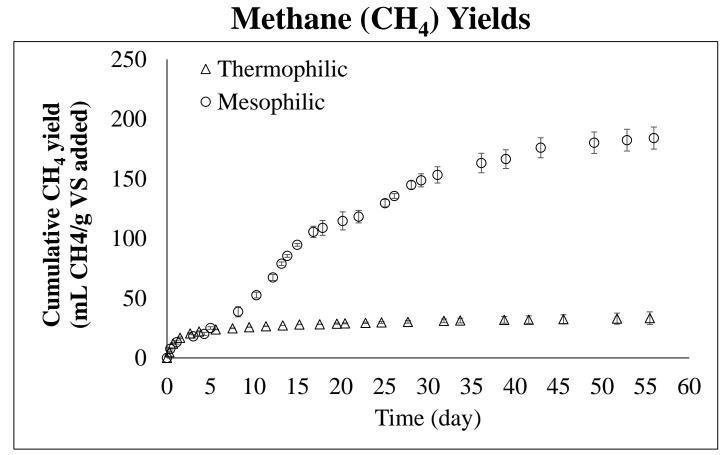

Item	FW+YW				FW+YW+B				
	Day 0	Day 14	Day 28	Day 56	Day 0	Day 14	Day 28	Day 56	
pН	6.99	5.13	5.37	5.36	6.95	5.69	7.88	8.59	
VFA (mg/L)	1,722	17,914	21,611	22,067	3,449	15,612	11,238	4,427	
	(±359)	(±1,583)	(±231)	(±109)	(±112)	(±787)	(±1,447)	(±2,428)	
Alkalinity	550	933	5,396	6,230	563	485	6,318	9,302	
(mg CaCO ₃ /L)	(±6)	(±59)	(±96)	(±240)	(±19)	(±109)	(±702)	(±2,0 9 0)	

Results: 1. Effect of Biosolids Addition (2)

Volatile Solid Reduction (VSR)


Results: 2. Effect of Substrate Ratios

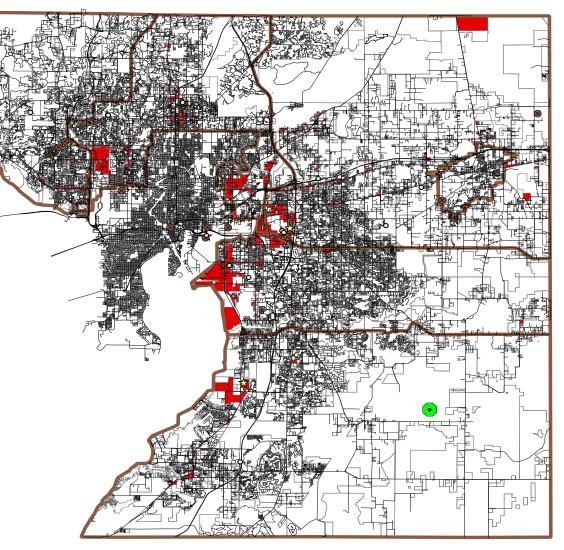
- Before 35 days, the digester with more YW resulted in higher CH₄ yield
- After 35 days, the digester with more YW resulted in lower CH₄ yield
- HS-AD with the ratio reflecting available amounts of wastes in Hillsborough County had a comparable VSR during 56 days


← Less pH variation ← Lignin

Results: 3. Effect of Substrate/Inoculum (S/I) Ratios

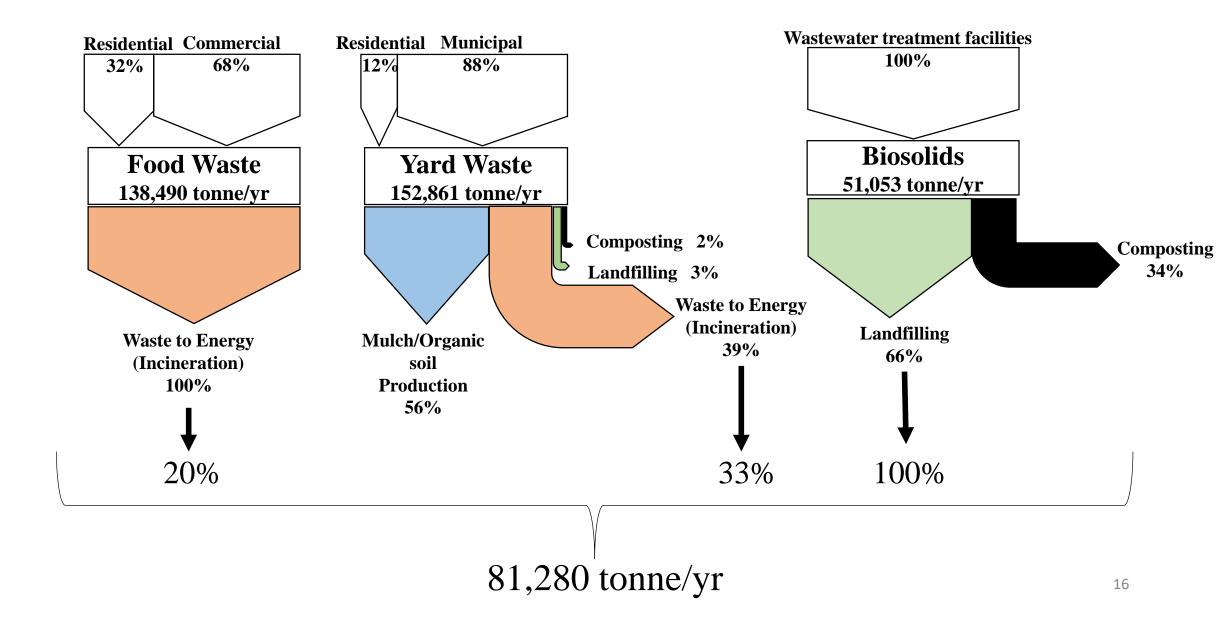
- Balanced S/I ratios important to CH₄ yield
 - Digestate recirculation to head of digester
- Day 48
 - S/I 3.8 mixture had high VFA concentration (>13,850 mg/L)
 - the S/I 1.2 mixture had the lowest NH₃ concentration <1,520 mg/L)

Results: 4. Effect of Temperature


- Higher CH₄ yield under mesophilic conditions
- Inhibition in thermophilic BMPs due to:
 - VFA accumulation
 - High NH₃ concentrations
 - \rightarrow Currently repeating experiments

Major Findings from Objective 1

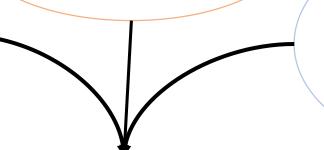
- Addition of Biosolids improves CH₄ yields in HS-AD of OFMSW:
 - Better conditions during start-up
 - Higher buffering capacity due to ammonium from biosolids degradation
 - Better volatile solids reduction
- Increasing portion of YW improved CH₄ yield before 35 days, but resulted in lower cumulative methane yields after 35 days:
 - Reduce the risk of VFA inhibition
 - Lower biodegradation due to lignin content
- S/I ratio 1.2 based on VS provided the greatest cumulative CH₄ yield
- High temperature results were inconclusive


Objective 2: Life Cycle Assessment of HS-AD

- Objective 2: Conduct life cycle assessment (LCA) to assess environmental impact and benefits for HS-AD of OFMSW
- Study area: Hillsborough County, FL
- Considered waste
 - Food waste from commercial area
 - Yard waste
 - Biosolids

GIS map of Hillsborough County, FL

Available Amounts of Waste in Hillsborough County


Materials & Methods

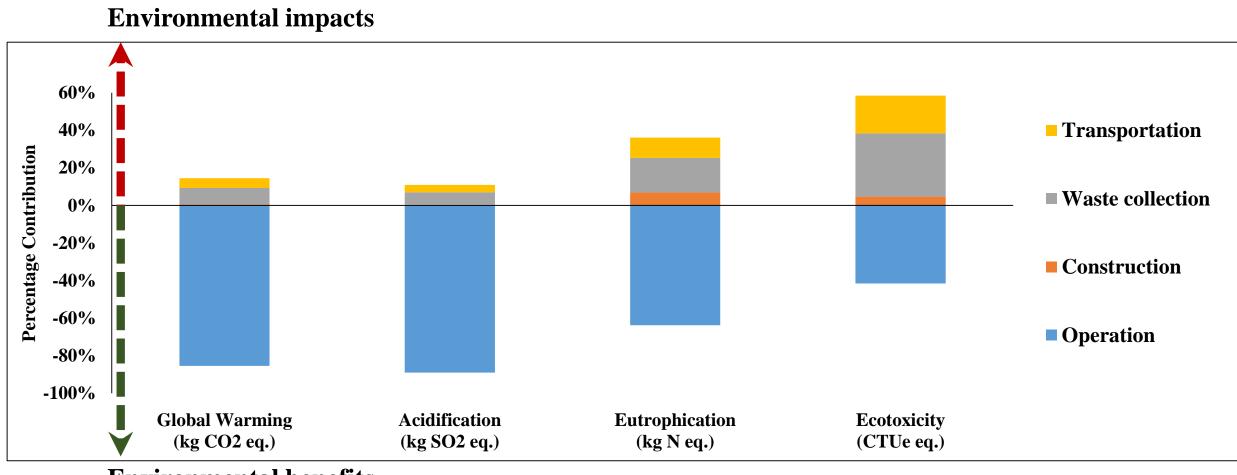
HS-AD life cycle inventory

- Review of literature from published papers and reports
- Equipment data from Ecoinvent
- Experimental data from labscale study

Functional unit

1L CH₄ produced
20 year life span

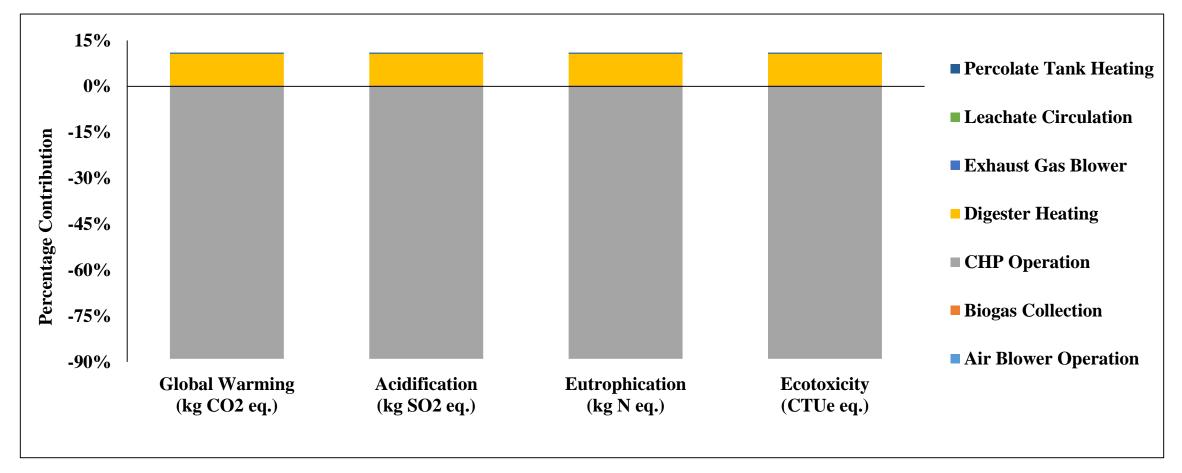
System boundary


- Waste collection
- Transportation
- HS-AD operation

Life cycle environmental impacts

Life cycle assessment

(SimaPro)


Life Cycle Environmental Impacts and Benefits of HS-AD

Environmental benefits

Environmental Impacts and Benefits of HS-AD

HS-AD Operation phase of HS-AD

*CHP: Combined heat and power system

Major Findings from Objective 2

- HS-AD can provide environmental benefits:
 - Benefits mainly associated with HS-AD operation
 - Environmental benefits resulted from energy and nutrient recovery
 - Waste collection is the largest contributor to impacts, especially eutrophication and ecotoxicity
 - Construction phase contribution is low compared with others

Objective 3: Life Cycle Cost Analysis of HS-AD

- Objective 3: Compare HS-AD with other waste management options to ensure economic sustainability.
- Full-scale scenarios in Hillsborough County Florida
- Capacity of each option: 81,280 tonne/yr
- Considered life span: 20 years
- Life Cycle Cost (LCC): present value method

Waste to Energy (Incineration)

HS-AD

Landfilling

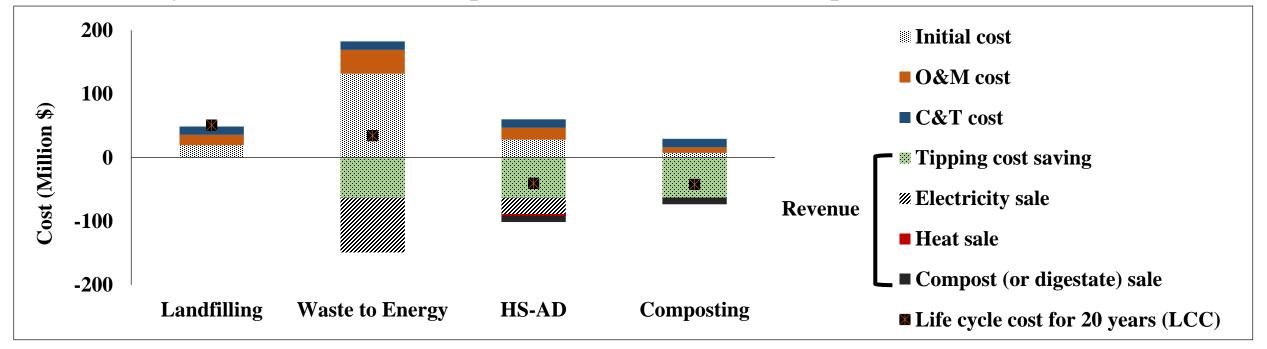
Composting (Windrow) ²¹

Material & Methods

• Life Cycle Cost (LCC, \$)

$$LCC = C_I + C_{O\&M} \times UPV + C_{C\&T} \times UPV$$

-(C_{R,h}×UPV + C_{R,e} × UPV^{*} + C_{R,d} × UPV + C_{R,t} × UPV)

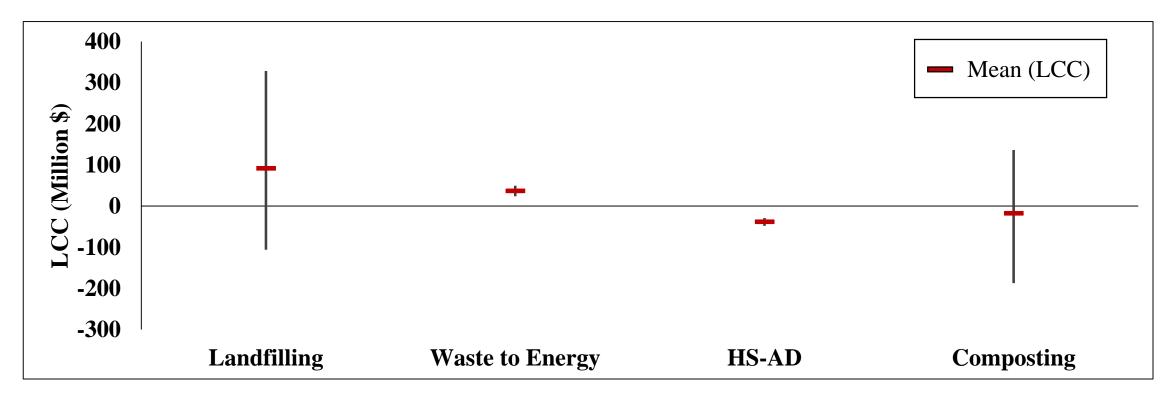

 C_{I} : Initial Cost w/o land acquisition cost $C_{O\&M}$: Costs for Operation & Maintenance $C_{C\&T}$: Costs for Collection and Transportation $C_{R,h}, C_{R,d}, C_{R,t} \& C_{R,e}$: Revenues from beneficial products: Heat, Digestate (or Compost), Tipping cost saving & Electricity, respectively UPV: a uniform present value factor UPV*: a non-uniform present value factor

• Uncertainty analysis of LCC considering land acquisition cost

- Monte Carlo simulation with 1,000 iterations
- Land acquisition cost in Hillsborough County

Results: Life Cycle Cost Analysis (1)

• Life cycle costs (w/o land acquisition cost) for different options


- Cost of revenue: Waste to Energy (WtE) >> HS-AD > Composting
- Largest contributor: Initial cost (Landfilling & WtE)

Tipping cost saving (HS-AD & Composting)

• The most economical option: Composting due to low initial costs

Results: Life Cycle Cost Analysis (2)

• Uncertainty analysis of Life Cycle Cost (LCC) considering land acquisition

- The most economical option: HS-AD
- LCC variations for composting and landfilling were larger

Major Findings from Objective 3

- Without land acquisition costs:
 - The most economical option was composting due to low initial cost
 - Life cycle cost (LCC) for HS-AD is comparable to composting
 - Tipping cost saving is the largest contributor for HS-AD, followed by initial cost
- With land acquisition cost:
 - The most economical option was HS-AD
 - The LCC variation for composting and landfilling is large because these options require larger land area

Conclusions and Next Steps

Conclusions

- Addition of biosolids in the HS-AD of FW and YW can improve substrate characteristics and increase CH₄ yields
- HS-AD of FW, YW, and biosolids can provide environmental and economic benefits via energy and compost recovery
- HS-AD can improve the environmental and economic sustainability of solid waste management in Hillsborough County, FL

Next steps

- Thermophilic BMP study
- Semi-continuous reactor study
- LCA for other waste management options
- Publications

Practical Benefits for End-Users

- Diversion of OFMSW and biosolids from landfills or incineration
 - Landfills:
 - Reduced fugitive GHG emissions
 - Increase landfill life
 - Improved leachate quality
 - WWTPs:
 - Reduced impact of leachate (side stream) from L-AD on mainstream WWTPs
 - Reduction of the biosolids processing costs for landfilling or incineration
 - Incineration:
 - Improved efficiency of incineration
 - Lower dioxin and NOx production
- Production of high quality biogas
- Production of compost (digestate)

Metrics: Education

Graduate Students and Post-doc:

Name	Rank	Department	Institution
Phillip Dixon	MS	Civil & Environmental Engineering	USF
Gregory Hinds	MS	Civil & Environmental Engineering	USF
Eunyoung Lee	Postdoc	Civil & Environmental Engineering	USF
Meng Wang	Postdoc	Civil & Environmental Engineering	USF

Undergraduates:

Name	Department	Institution	
Ariane Rosario	Civil & Environmental Engineering	USF	
Lensey Casimir	Civil & Environmental Engineering	USF	
Paula Bittencourt	Mechanical Engineering	USF	
Eduardo Jimenez	Civil & Environmental Engineering	USF	
Deborah S. B. L. Oliveira	Chemical & Biomedical Engineering	USF	
Luiza S. B. L. Oliveira	Chemical & Biomedical Engineering	USF	
Aleem Waris	Chemical & Biomedical Engineering	USF ²⁸	

Dissemination: Publications & Website

Peer reviewed journal article and book chapter:

- Hinds, G.R., Mussoline, W., Casimir, L., Dick, G., Yeh, D.H., Ergas, S.J. (2016) Enhanced methane production from yard waste in high-solids anaerobic digestion through inoculation with pulp and paper mill anaerobic sludge, *Environmental Engineering Science*, 33(11): 907-917.
- Hinds, G.R., Lens, P., Zhang, Q., Ergas, S.J. (2017) Microbial biomethane production from municipal solid waste using high-solids anaerobic digestion, In *Microbial Fuels: Technologies and Applications*, Serge Hiligsmann (Ed), Taylor & Francis, Oxford, UK.

MS Theses:

- Dixon, P. (2018) Impact of Substrate to Inoculum Ratio on Methane Production in High Solids Anaerobic Digestion (HS-AD) of Food Waste, Yard Waste, and Biosolids, MS Thesis, USF.
- Hinds, G.R. (2015) *High-Solids Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: State of the Art, Outlook in Florida, and Enhancing Methane Yields from Lignocellulosic Wastes, MS Thesis, USF.*

Website: http://bioenergy-from-waste.eng.usf.edu/

Phase II Dissemination: Oral Presentations

- Ergas, S.J., Hinds, G.R., Anferova, N., Bartáček, J., Yeh, D. (2016) Bioenergy recovery and leachate management through high solids anaerobic digestion of the organic fraction of municipal solid waste, *Proc. World Environmental & Water Resources Congress*; May 22-26, 2016; West Palm Beach, Florida.
- Dixon, P., Bittencourt, P., Lee, E., Wang, M., Jimenez, E., Zhang, Q., Ergas, S.J. (2017) Effects of Biosolids Addition and Alkalinity Sources on High-Solids Anaerobic co-Digestion (HS-AcD) of Food Waste and Green Waste, *Proc. WEF Residuals and Biosolids Conference*, April 8-11, Seattle, WA.
- Dixon, P., Bittencourt, P., Anferova, N., Jenicek, P., Bartacek, J., Wang, M., Ergas, S.J. (2016) Effects of Biosolids Addition, Microaeration, and Alkalinity Sources on High-Solids Anaerobic Co-digestion (HS-AcD) of Food Waste and Green Waste, *Waste-to-Bioenergy: Applications to Urban Areas, 1st International ABWET Conference*, Jan. 19-20, Paris, France.
- Lee, E., Bittencourt, P., Casimir L., Jimenez, E., Wang M., Zhang, Q., and Ergas, S. "High Solids Anaerobic Co-digestion of Food and Yard Waste with Biosolids for Biogas Production", *Proc. Global Waste Management Symposium*, Palm Spring, CA, USA, Feb 11-14, 2018.

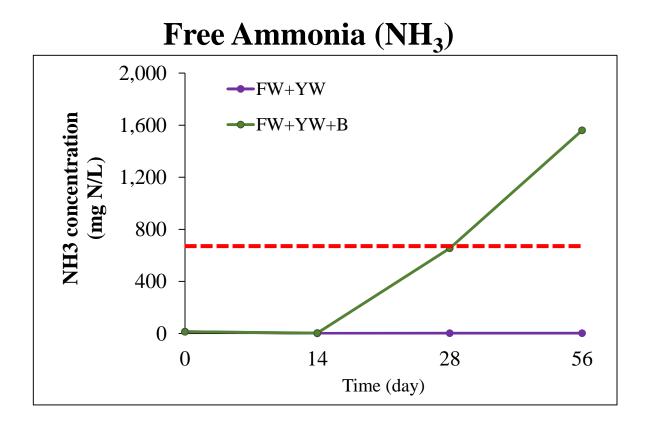
Phase II Dissemination: Posters

- Dixon, P., Waris, A., Lacoff, P., Lee, E., Wang, M., Zhang, Q., Mihelcic, J., and Ergas, S. (2018) Energy From Biosolids and Municipal Solid Waste: Effect of Organic Loading Rate on Methane Yield, *Florida Water Resource Conference* (FWRC), Daytona Beach, FL, April, 2018.
- Oliveira, L.S.B.L., Oliveira, D.S.B.L., Lee, E., Jimenez, E., Ergas, S.J., Zhang, Q. (2018) Life Cycle Assessment for High Solids Anaerobic Digestion of Food Waste, Yard Waste, and Biosolids, *Thirty-Third International Conference on Solid Waste Technology & Management*, Annapolis, MD, March 11-14, 2018.
- Lee, E., Bittencourt, P., Jimenez, E., Casimir, L., Wang, M., Dixon, P., Zhang, Q., and Ergas, S. (2017) High-Solids Anaerobic Co-digestion of Food Waste and Yard Waste with Biosolids for Sustainable Bioenergy Production, 2017 International Summit on Energy Water Food Nexus, Orlando, FL, October, 2017.
- Dixon, P., Lee, E., Bittencourt, P., Jimenez, E., Casimir, L., Wang, M., Zhang, Q., Ergas, S.J. (2017) Effects of Biosolids Addition and Alkalinity Sources on High-Solids Anaerobic Co-digestion of Food Waste and Green Waste, *Renewable Energy Systems & Sustainability Conference*, Lakeland, FL, July 31-August 1, 2017.
- Dixon, P., Lee, E., Bittencourt, P., Jimenez, E., Casimir, L., Wang, M., Zhang, Q., Ergas, S.J. (2017) Effects of Biosolids Addition and Alkalinity Sources on High-Solids Anaerobic Co-digestion of Food Waste and Green Waste, *SWANA FL 2017 Summer Conference & Hinkley Center Colloquium*, Fort Myers, FL, July 23-25, 2017.
- Bittencourt, P. Jimenez, E., Dixon, P., Wang, M., Ergas, S.J. (2017) Effects of Alkalinity and Temperature on High-Solids Anaerobic co-Digestion, *USF Undergraduate Research Colloquium*, Tampa, FL, April 6, 2017.

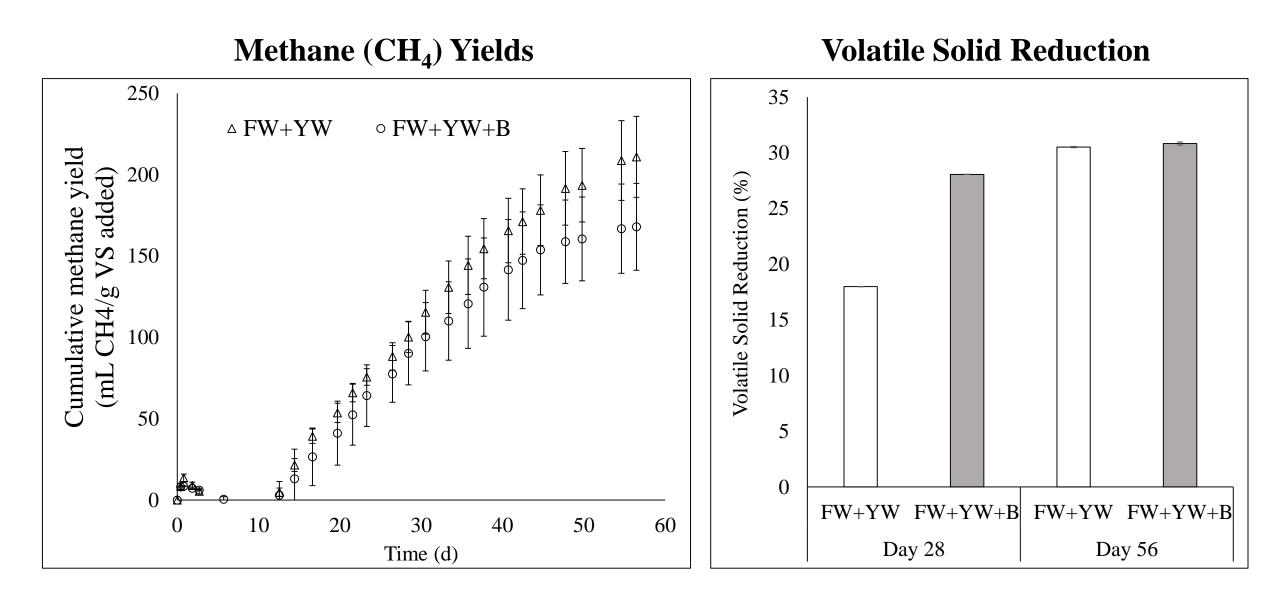
Acknowledgements

- William W. "Bill" Hinkley Center for Solid and Hazardous Waste Management
- National Science Foundation Partnerships for International Research and Education (PIRE) (No. 1243510)
- National Science Foundation Research Experience for Undergraduates (REU) (No. 1156905)

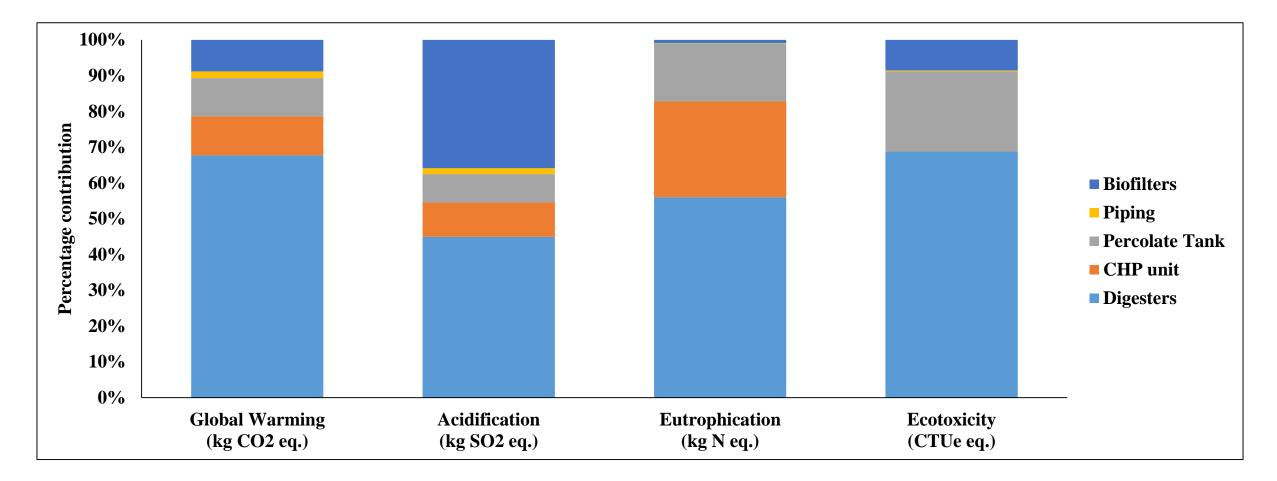
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.



Questions?



Results: 1. Effect of Biosolids Addition (2)


• NH_3 -N inhibition > 700-1,100 mg/L (Niu et al., 2013)

Results: 1. Effect of Biosolids Addition (S/I=1)

Environmental Impacts of HS-AD

Construction phase of HS-AD

Material & Methods

Input	Value	Reference	Input	Value	Reference	
Life cycle cost analsis period (yr)25This study			Waste to Energy (incineration)			
Discount or interest rate (%)	1.89	USIR (2017)	Waste to Energy (WtE) facility size (m2)		This study	
Escalation rate (%)	0.65	EERC (2017)	O&M cost factor for WtE (\$/tonne)	28	Funk et al. (2013); SWANA (2012)	
Electricity price (\$/kWh)	0.1035	EIA (2017)	Percentage of reject after mechanical treatment for WtE (%)	89.39	Fernández-González et al. (2017)	
Heat rate (\$/kWh)	0.0088	Moriarty (2013)	Lower heating value of waste for WtE (MJ/tonne)	8000	Habib et al. (2013)	
Digestate price (\$/tonne)	11.2	Schwarzenegger (2010)	Composting (Windrow)			
Tipping fee, non-processable solid waste (\$/tonne)	31	Hillsborough County (2016)	Composting system (Windrow) size (m2)	43100	This study	
Tipping fee, processable solid waste (\$/tonne)	58	Thisborough County (2010)	Compost production ratio (g compost/g wet mass waste)	0.656	Komilis and Ham (2000)	
Collection & Transfer			Compost price (\$/tonne)	29	Shiralipour and Epstein (2005)	
Average distance of collection (miles/hual)	211	This study	Landfilling			
Average distance of transfer (miles/hual)	58 & 28	This study	Landfill size (m2)	72800	This study	
A haul loading (tonne)	30	Faucette et al. (2002)	Expected life time of landfill (yr)	25	This study	
Transportation cost factor (\$/miles)	0.8	This study	Capital cost factor for landfill (\$/acre)	774000	US EPA (2015)	
High Solids Anaerobic	High Solids Anaerobic Digestion			3.31	US EPA (2015)	
HS-AD size (m2)	3500	This study				
Methane yield for HS-AD (ml/gVS)	92.89	This study				
Voletile Solid reduction (%)	31	This study				
Low heating value of methane for HS-AD (KWh/m3)	9.94	Passos and Ferrer (2015)				
Combined Heat and Power Efficiency: Heat (%)	49.5	BIOFerm, n.d.]			
Combined Heat and Power Efficiency: Electricity (%)	37.7					